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The transformation of a discrete state into resonances is considered in the 
framework of The Friedrichs model. The number of resonances depends on the 
form factor which describes the interaction of the discrete state and the continuum 
and for a reasonable form this number exceeds the usual one-to-one 
correspondence. The physical implications of the phenomenon are discussed. 

Hadron spectroscopy is one of the most intricate areas of modern particle 
physics. Theoreticians and experimentalists are competing with each other 
in interpreting already discovered resonances and inventing new types. The 
pragmatic approach to the problem of classification of resonances consists 
in identifying a standard, nonexotic set of particles which admits a conven- 
tional quark model interpretation and then considering the superfluous states 
as candidates for exotic ones--glueballs ,  hybrids, molecules etc. Indeed, the 
direct observation of exotic quantum numbers forbidden in the usual quark 
model simplifies the discovery these new kinds of matter, but until now very 
few examples of open exotics exist, and even those are not confirmed. Also, 
it is generally believed that new kinds of  mesons should have specific decay 
modes and specific creation processes, e.g., glueballs should easily be created 
in decays of Jlt~ and have large couplings with "q-q, Xlrl', and vl'x I' channels 
and suppressed electromagnetic ones (Gershtein et al., 1984). Unfortunately, 
these statements have only qualitative character because in the case of  hidden 
exotics, mixing with quark states may drastically change branching ratios 
into different channels (Amsler and Close, 1995, 1996a, b), 

So, we return to the usual procedure of separating superfluous states 
with nonexotic quantum numbers as the main tool for discovery of new kinds 
of mesons (a similar problem for baryons also needs discussion). In this 
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situation we must have the firm statement that the number of states which 
we predict in the framework of some model (e.g., potential, bag, string, etc.) 
is not influenced by interaction. In the present paper we analyze the validity 
of the hypothesis that there is always a one-to-one correspondence between 
the number of predicted states and the number of resonances. It is generally 
believed that the interaction with the decay channel provides the width of 
the resonance; it may shift the mass, but never changes the number of states. 
We show that this common point of view (we also were believers until 
recently) is generally wrong. In a simple but rather universal model we 
demonstrate that as a rule the number of states which is defined by interaction 
is greater than that expected, and only the weak-coupling regime gives a 
one-to-one correspondence. 

We begin our discussion with the motivation of the model which will 
be used in this paper for the description of the unstable particles. Switching 
on the interaction of one particle with two (or few) others, whose total mass 
permits the transition on the mass shell, makes this particle unstable. This 
statement is trivial for any particle physicist. On the other hand, from the 
point of view of field theory, the question is not as simple as it seems. As 
an example, let us consider the theory of two scalar fields qb(x) and ~(x) with 
masses M and m, respectively, with 

M > 2m (1) 

Now, if we switch on among others the interaction described by the vertex 

= ~" I d4x qb(X)t~2(X) Si.t (2) 
J ! 

the theory becomes unstable. The latter means that the usual asymptotic 
conditions fail in this case. Of course, we can still calculate the Green functions 
in this theory, and investigate the complex singularity which corresponds to 
the initially stable ~-particle, but this is only part of the story. The most 
important questions from the physical point of view are as follows: 

�9 What are the asymptotic states in this field theory? 
�9 How can we calculate the S-matrix for these asymptotic states? 

A general discussion of  these questions in the relativistic case is rather 
complicated and we do not dwell on them here, referring the reader to 
Antoniou et al. (n.d.-a). Here we will give a schematic consideration, sufficient 
for qualitative description of many physical situations, where the nonrelativis- 
tic approximation is valid. 

In terms of field theory, the direct consequence of the instability condition 
(I) is the nonvanishing interaction due to (2) for t --* +~ ,  which could be 



Possible Origin of Extra States in Particle Physics 2337 

established, e.g., in the interaction picture. The nonvanishing part of the 
interaction requires the redefinition of the asymptotic Hamiltonian (which 
usually is taken equal to the free one) and the true asymptotic states should 
be defined as eigenstates of this modified Hamiltonian. The correct scattering 
theory should be considered now for these true asymptotic states due to the 
residue (well behaved at t --+ -+~) interaction. At first sight it seems that the 
whole problem becomes technically very difficult (new Feynmann diagrams 
with new nonlocal propagators, vertexes, etc.), but this is not really true. To 
see this the path integral approach is very useful. In this approach it is obvious 
that the basic object is the total action and that the perturbation theory with 
respect to the free Hamiltonian makes the scattering theory ill-defined. So, 
if we use as asymptotic states the true ones, we can use the usual Feynmann 
diagrams for internal parts of the processes; the modification concerns only 
external lines. 

Now, after this very short and schematic general introduction we shall 
start considering the subject of the present paper--a possible picture of 
asymptotic states, their properties, and the correspondence with the common 
point of view on the resonances in particle physics. The appropriate framework 
for the description of resonances is provided by the Friedrichs (1948) model, 
the touchstone of the general theory of perturbation of unbounded operators, 
which goes back to the late 1940s. This model is rather popular even nowa- 
days, but unfortunately not among particle physicists. To simplify formulas 
we will not consider the second-quantized version of the Friedrichs model, 
which is directly connected with the asymptotic Hamiltonian of the field 
theory with interaction in the form of (2), limiting ourselves to its lowest level. 

Let us denote by I1) the discrete state with energy o~1 and by Ito) the 
state with continuous spectrum for 0 to ~. These states span the space of 
states of our system ~ .  The scalar products of the basis states are 

( I l l )  = 1 (3) 

( t o l t o ' ) =  ~(o~ - o~') 

The unperturbed Hamiltonian in ~ can be written as follows: 

/4o = tolll)(ll + do  tolo~)(tot (4) 

Now let us add to H0 a perturbation which describes the transitions between 
I1) and Ito): 

f; Hint = K dto [f(to)lto)(ll + f*(to)ll)(tol] (5) 
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where ~. is a coupling constant and f(to) is a smooth, square-integrable 
function, which satisfies the condition 

f; co f > k 2 dto tfl2(~ (6) 
to 

The physical sense of (6) will be clear later. As is seen from (4) and (5), our 
model describes exactly the situation discussed in the Introduction: the dis- 
crete state I1) is the state predicted in some model (potential, bag, string, 
etc.). The Hamiltonian 

S = Ho + H~,t (7) 

describes the interaction of this state with the continuum. 
Now tol > 0, to make the decay possible on the mass shell. The position- 

ing of the threshold at the origin is not essential; we placed it there for 
simplicity. 

The eigenvalue problem for the Hamiltonian (7) is 

(H - E)~(E)  = 0 (8) 

and we have to solve it in the space {R, i.e., we shall seek the eigenvector 
~ (E)  in the following form: 

~ (E)  = t~(E)l 1) + dto t~(E, to)rto) (9) 

where ~(E) and +(E, co) are the unknown amplitudes for which, making use 
of (3) and (8), we obtain the system of equations 

f; (tol - E)~(E) + k dto ~(E, to)f*(m) = 0 (10) 

(~ - E)r ~) + X~(E) f ( t o )  = 0 

To solve this system, let us begin with the second equation and express 
~(E, to) via qJ(E): 

kf(to) 
q,(E, o,) = AS(to - ~ - -  O(E) ( I 1 )  

t o - E  

where A is an arbitrary constant. Note that the first term in the r.h.s, of  (1 1) 
arises because the factor oJ - E in the equation has as a function of  E a real 
zero at E = to. This expression for O(E, 00) can be used in the first equation 
(10), and we finally obtain the equation for the amplitude O(E): 

[ o , , - x z f ; d o , ~ ] q , ( E ) = - X A f * ( ~  (12) 
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Note that in this form equation (12) is only symbolic. Initially we considered 
system (10) for real values of E. The factor in square brackets on the left-hand 
side of (12) could be defined as the boundary value of the analytic function 

Tl-l(E) = tol - E - h 2 dto ffl2(to) 
to - E (13) 

This function, as is seen from its representation, has a cut [0, ~c) and for real 
energy we can define its value from above and from below the cut: 

~ ; l (E)  = tol - E - h 2 dto Lfl2(to) (14) 
to - (E • ie) 

These two functions TI_+(E) correspond to two different solutions of our 
eigenvalue problem (8)--in-going and out-going waves. So the proper form 
of equation (12) for real energy is 

"qZ~(E)~+_ = - ~ . A f * ( E )  (15) 

We see that the +(E) [as well as qJ(E, to)] also acquires the subscript •  
In the mathematical literature the function -q(E) on the whole complex 

plane E is called the partial (or one-particle) resolvent of H. For the particle 
physicist the more familiar term is the Green function or the propagator. The 
solution of (15) can be written in the form 

t~+_ = t~ ~ - A 'q+(E) ) t f* (E)  (16) 

where $~ is the solution of (15) with vanishing r.h.s. The latter depends 
upon the properties of the resolvent "q(E): if it has a pole on the first sheet 
on the real axis, then 

~o = B S ( E -  Eo) (17) 

where E0 is the position of the pole. Close inspection of equation (14) shows 
that this pole may exist only below a threshold. From the physical point of 
view it seems rather pathological and to prevent creation of this unwanted 
pole it is sufficient to impose condition (6) on the form factor f(r If this 
is done, then the first term in (16) is absent, and gathering together (8), (11), 
and (16), we obtain the final form of eigenvector qr(E): 

~ . ( E )  = IE) + h f*(E)r l ._(E)  I1) + k do+ f(to) (18) 
- t o - ( E •  

This formula is the key point of our present discussion and therefore we 
must carefully investigate it and its consequences. 
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First, the most important fact that follows from (18) is that the Hamilto- 
nian of our system (7) has only continuous spectrum--the discrete state I1) 
has been dissolved in the continuum. 2 The comparison of eigenvectors of  H0 
and H leads us to the conclusion that in the unstable case there is no analyticity 
in the coupling constant h. To understand the fate of the discrete level with 
E = col we must investigate the resolvent xI(E ) on the complex plane E. 

The common point of view on this question is the following--the pole 
at the point E = col moves to the second sheet, acquiring negative imaginary 
part, and transforms into the Breit-Wigner resonance. This point of view is 
supported by calculations in the limit h --> 0. Indeed, the inverse resolvent 
r l ; t (E) could be represented in the form 

"q~t(E) = co I - E - k2(r(E) + i'rrlfl2(E)) (19) 

where r(E) is the real part of  the integral on the r.h.s, of  (13). If we assume 
that r(E) and Ifl2(E) are smooth functions in the vicinity of co~, then from 
(19) it follows that a new pole of the resolvent will be at the point 

Ec = col - k2r(col) - irrk21fl2(col) 

= ~ l  - i F  ( 2 0 )  

Note that the representation (19) is valid if we start from the upper rim of 
the cut and continue to the second sheet from above. We also can start from 
the lower rim of the cut and continue to the second sheet from below. There 
of course we will find the complex conjugated partner of (20). 

This consideration is valid only for infinitesimal values of the coupling 
constant and cannot be applied even qualitatively for the case of hadronic 
resonances, where typical coupling with decay products is large. In this case 
we have to consider the equation for complex poles of the resolvent without 
approximation and the whole form factor rico) becomes important. To illus- 
trate this, let us consider several examples that show that the result of switching 
off the interaction may lead to qualitatively unexpected consequences. 

Example 1. Let us take the form factor f(co) in the form 

col/2 
Ifl2(co) -- - -  (21) 

c o + p 2  

where p is real. The inverse resolvent according to (13) is given by 

fo to u2 1 qf]-l(E') = col - -  E -  ~2 dco c o +  p2 co _ E (22)  

2This phenomenon has to be compared to the case when to I lies below threshold. In this case 
equation (15) has the nonpathological homogeneous solution (17), and finally we obtain two 
eigenvectors of H- - the  perturbed discrete state and the perturbed continuous state. 
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and after integration we arrive at 

isr~ 2 
xl- l(E) = tol - z z (23) 

z -  ip 

where we have defined the variable z = 4 ~  in such a way that the first sheet 
of  the E plane corresponds to the upper  half-plane of  z and the second sheet  
of  E to the lower half-plane of z. Condition (6) means  in this case that 

,trek 2 
to1 > - -  (24) 

P 

which in turn implies that the equation xI-*(E) = 0 has the roots 

zt.2 = ---[tol - 2~/d - .,/2]u2 _ i'y 

z3 = - i d  (25) 

where d and ~/are given by 

p = d + 2 ~ ,  "rrh z = 2"u + d 2) (26) 

For the new parameters  ",/and d, inequality (24) reads 

to1 > 2~/d (27) 

Recall that (27) prevents penetration of  zi to the upper  half-plane of  z (or to 
the first sheet of  E). As is seen f rom equations (25) and (27), here we can 
have two different situations: 

�9 Two complex-conjugated  poles on the second sheet of  the E plane, 
with one antibound state, below the threshold, also on the second 
sheet: tol - 2",/d > ~/2. 

�9 Three antibound states and no resonances: ~/2 > to~ _ 2",/d > 0. 

The whole resolvent  is 

z +  i (d  + 2"r 
"q(E) = (z  + id ) [ ( z  + i'~) z - (to~ - 2"yd - ,r (28) 

and for k ~ 0 ( ' , / ~  0) it has only two complex-conjugated  poles 

Ec = tol - 2"yd +__ 2i3, toV z + O()k 4) (29) 

and no antibound states. 

E x a m p l e  2. In this case the form factor is g iven by 

k2to~/2 
If[Z(to) = (30) 

(to - pz)(to _ p , : )  
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Now, p is a complex  number. Proceeding as in the previous example,  we 
obtain the inverse resolvent: 

i'rrh z 1 
~l-l(E) = cot - z 2 + - -  (31) 

p - p * ( z + p ) ( z - p * )  

where z is the square root o f  energy, def ined as above. The condition on the 
parameters  now is 

i,rrX 2 
col (p _ p,) lpl  2 > 0 (32) 

In this example  the equation X I- I(E) = 0 has four solutions which correspond 
to the following situations: 

�9 Two pairs of  complex  conjugated poles (resonances). 
�9 Pair o f  complex  conjugated double poles. [Here a fine tuning of  

parameters  is needed (Antoniou et al., n.d.-b): Re p = ,J-~l, I m p  = 
(~rh2/16co 1 ) i/3.] 

�9 One pair  of  complex  poles and two antibound states. 
�9 Four antibound states. 

All these cases in the limit k ---, 0 fuse together at Ec 

f c  = col + 
,rr2k2(col - - I p l  2) i'rrh2,,/~t 

2p2[(co t -- [p12) 2 + 4p2col] [(co t - ipl2) 2 + 4p2col] 
-u O(~. 4) 

(33) 

where P2 = I m p .  
We could continue this set of  examples ,  but the general idea in now 

clear: as far as the consideration of  singularities is fulfilled nonperturbatively, 
the number  of  resonances created out o f  stable states exceeds the expected 
one-to-one correspondence.  

Questions which immediately  arise in discussions with particle physicists 
are: How can the number  of  states be changed? Doesn ' t  this contradict  the 
completeness relation. To answer these questions and forestall more  elaborate 
ones we first should prove the comple teness  of  the solutions obtained and 
then treat the problem of  discrete states in the case of  resonances.  

First let us fix the arbitrary constant A = 1 in the final expression for 
the eigenvector  ~ ( E ) ,  equation (18). Making  use of  normalization conditions 
(4) and the Sokhots t i -P lemel  relation, one can prove that 

(qSz(E))+q, '+(E ' )  = 8(E - E ' )  (34) 
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Further, the Sokhotski-Plemel relation provides us with the following equa- 
tion for real E: 

�9 I-,(E) - "q_(E) = 2"rrik21fl2(E)'q+(E)'q_(E) (35) 

Using (35), one can convince oneself that the following remarkable relation 
is valid: 

f0 o i0 o dE qC+(E)(~+(E)) + = I1)(11 + do Io~)(o~1 (36) 
J 

The same is true also for the out-going solution ~_(E). Equations (34) and 
(36) tell us that the set of solutions qe'+(E) [or W_(E)] forms a complete 
system in our case of unstable particle) The other question, which is rather 
difficult to formulate precisely, concerns the status of resonances as a "parti- 
cle" or "discrete state." This question has been intensively discussed in a 
series of papers of the Brussels-Austin group (Prigogine, 1992; Antoniou 
and Prigogine, 1993; Bohm and Gadella, 1989) and in a textbook by Bohm 
(1993). Unfortunately, a comprehensive discussion of this subject will lead 
to functional analysis, very far from particle physics, and therefore we again 
will just schematically present the general ideas. 

l e t  us return to solution (18) of the eigenvalue problem [for definiteness 
we shall speak of the 'tr.(E) solutionl and consider it as a function of complex 
energy. As we already know, the resolvent "q+(~ which enters into the r.h.s. 
of (18) has a pole (poles) on the second sheet in the point (points), say Ec. 
The residue in this pole is proportional to the expression in the square brackets, 
taken at E = Ec. Let us denote it by ~G+(Ec): 

xlt~(Ec) = 11) + k I0~ do~ f ( ~ ~  ,to) (37) 
- -  IE~Ec 

where the continuation to the point Ec should be performed from above the 
real axis. The superscript G stands for Gamow. It is this state, being properly 
continued to the second sheet, that is the eigenvector of H with complex 
eigenvalue Ec, and there exists a generalized spectral decomposition of H 
where ~+(E~.) enter as a discrete state. It goes without saying that the last 
sentence is a heresy from the point of view of the Hilbert space formulation 
of quantum theory, hut we have not worked in the Hilbert space from the very 
beginning, when we considered the Hamiltonians with continuous spectrum. 
Usually we do not pay too much attention to the difference between the 
Hilbert space and the rigged Hilbert space (the space where the operators 

31t is useful to compare this state with the situation where the discrete level lies below 
the continuum. 
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with continuous spectrum is defined). The reason for this is probably the 
Dirac invention of bra and ket vectors, which enter into the formulas in a 
very symmetric way as far as the real spectrum is concerned. The general 
situation is nevertheless the following: if we consider operators with continu- 
ous spectrum, we may use as states the wave packets, which are good, square- 
integrable elements of some Hilbert space ~ .  But among these vectors we 
cannot find the eigenvectors of our operators and we must extend our space 
to also include nonnormalizable vectors if we want to construct the spectral 
decomposition of operators. This extended space ~+ is really the space of 
the functionals, not the functions (recall the popular example of the 8-func- 
tion). The space of functionals q~+ should be supplied with the space of  test 
functions q5, where these functionals may be defined. In such a way there 
arises a rigged Hilbert space or Gelfand triplet of spaces (though it is more 
appropriate to say a trinity of spaces) 

C ~ C 4:) + (38) 

Now we can return to the Gamow vector and explain its place in the 
present construction. First we emphasize that the continuation to the complex 
point Ec in (37) should be performed starting from above the real axis (if 
we simply put E = Ec in the integrand, the answer will be wrong). The 
obstacle for direct continuation is the contour of integration: to move E below 
the real axis we have to deform the path of integration to the complex plane, 
which is impossible because the state Io~) is defined for real o~ only. At this 
point let us recall that the state ~+(E) belongs to the space ~+. If we can 
find the appropriate space of test functions �9 such that the (qbloJ) (where (qbl 
belongs to ~ )  could be analytically continued to the lower half-plane, we 
would be able to make the analytic continuation of (37). The space �9 which 
we need for this purpose does exist and its elements have the following form: 

fo o qb D (dOl = dto )o~l+(m) (39) 

where the function ~b(to) belongs to the space of  Hardy class functions from 
above, i.e., functions which could be analytically continued to the lower 
half-plane. 

The above discussion shows that in spite of the absence of resonances 
in the unity decomposition (36) we can construct the corresponding states 
in the rigged Hilbert space. Moreover, there exists a generalized spectral 
Hamiltonian which could be analytically continued in the rigged space in 
such a way that the resonances will explicitly enter it. We will not present 
this construction here and will devote the remainder of this paper to the 
discussion of physical consequences of our approach. 
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As is seen from the general expression for eigenstates and our examples, 
the function f (m)  plays a very important role in the formation of resonances, 
their masses, widths, and number. Certainly, this important object should be 
derived in the framework of fundamental theory- -QCD--bu t  in the present 
situation it is hardly possible and we have to introduce it phenomenologically. 
Therefore we must investigate if there are some general requirements on 
these functions which follow from quantum theory. One we have already 
used in our approach forbids the appearance of the stable state below the 
threshold by condition (6). Particle physicists have recognized in the form 
factors used in our examples the factor ~-to-----the two-particle phase volume, 
which defines the vanishing of the transition amplitude of one scalar into a 
pair of scalars. In the general case the power of relative momentum ~ will 
be l + 1, where l is the relative orbital momentum. In addition, we imposed 
the requirement of square integrability of the form factor. Actually we can 
relax this condition--all our arguments hold even for form factors which 
vanish at infinity. As we see, these conditions leave too much room for 
different parametrizations of the form factor and there may arise the impres- 
sion that among these different possibilities there also exists a case when the 
number of states coincides with the initial one. Unfortunately, this very case 
does not fit into the aforementioned conditions. Indeed, let us take the follow- 
ing form factor: 

Ifl2(oj) = ~ (40) 

which does not vanish at infinity. To define the inverse resolvent, we need 
to make one subtraction in the dispersion integral (13) at some point E = 
-Eo, where E0 = p2 > 0. This subtraction of an infinite constant from the 
integral term may be absorbed into the infinite renormalization of to~ in (13). 
After this renormalization we arrive at the following expression for rI-I(E): 

"q-I(E) = to~ -- Z 2 -- i'rrh2(Z - ip) (41) 

where we have used the notations from our first example and the superscript 
r indicates renormalized. The equation a'l-l(E) = 0 now is quadratic and has 
exactly one pair of complex conjugate solutions. So, in principle we may 
have the desired one-to-one correspondence, but the price is the infinite 
renormalization in the model which is considered as a phenomenological 
one. In addition, this subtraction of the integral may be absorbed into the 
renormalization of a physical quantity only in the case of S-wave decay; for 
higher waves there is nothing to renormalize. Therefore we consider this 
possibility unsatisfactory. 

The model which we have considered may be generalized for many 
channels and several discrete states to describe more realistic situation in 
particle physics--mixing of states via interaction with a mutual continuum. 
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The most important features of this generalization are the following: all 
discrete states dissolve in the continuum, the number of eigenstates of the 
Hamiltonian is equal to the number of different continuums, and the equation 
which defines the positions of the poles is common for all states--it becomes 
the equation for the poles of the determinant of the partial resolvent, but the 
intensities of different poles depend on the specific channel. If again we 
consider the meromorphic class of functions, the number of resonances 
exceeds one-to-one correspondence. 

The model we have considered is rather general and universal, and QCD, 
as the fundamental theory of the strong interaction, should provide us with 
some prescription for the key object of our approach to the form factor f(o~). 
As we have already mentioned, the relativistic generalization of the Friedrichs 
model is also possible (Antoniou et al., n.d.-a) and the role of the square of 
the form factor in this case is played by the spectral density of the propagator 
of the bound discrete state; therefore, in the realistic situation the use of 
exponential functions is hardly possible. Rather, one should use a function 
with the usual threshold singularity and meromorphic character of the appro- 
priate complex plane and therefore this also should lead to qualitatively the 
same picture. On the other hand, one can argue that among the lowest 
multiplets we do not observe any doubling of states; all of them are very 
nicely described by single Breit-Wigner poles. That is true, but at the same 
time, when we consider the excited states, the situation changes rather drasti- 
cally. Sometimes the hypothesis about extra states fits better than the single 
state. The example of the most advanced analysis of the resonance picture 
in the singlet channel 0 H, in the framework of K-matrix formalism with 

- -  ! 

channels KK, "q-q, "q-q, and "rr'rr (Anisovich et al., 1994, 1996), shows that 
the number of states exceeds the quark model predictions. The most favorable 
interpretation of these extra states, of course, is the glueball one, but the 
appearance of pole splitting cannot be rejected. Certainly a clearer situation 
is in the isospin 1 states, because here we have no admixture of glueballs 
and here we find the region of masses 1450--1700 Gev with quantum numbers 
1 - -  where different fittings give several states (Review of Particle Properties, 
1994). Also, if the shape of the resonance differs from the usual Breit-Wigner 
one, it may be a reflection of several poles which are not well separated and 
more accurate measurement of the phase may clarify the interpretation. 

The last point we want to mention in conclusion is the dependence of 
the shape of resonances on the channel even for the well-established ones. 
This phenomenon is very well known, but usually it is interpreted as experi- 
mental errors or the influence of different interactions of different decay 
products. A multichannel generalization of our approach, which we have not 
considered here, clearly shows that this dependence is another manifestation 
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of  form factors fi(to) which are different for different channels and can be 
used for its investigation. 
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